Mem. S.A.It. Vol. 88, 860 © SAIt 2017

Memorie della

Supermassive star formation with non-LTE primordial-gas chemistry

K. Sugimura¹, C. M. Coppola^{2,3}, K. Omukai¹, D. Galli³, and F. Palla³

¹ Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

e-mail: sugimura@astr.tohoku.ac.jp

² Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, I-70126 Bari, Italy

³ INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

Abstract. The remnant black holes (BHs) of supermassive stars formed at z > 10 are promising candidates of the seeds for supermassive BHs. They are thought to form in pristine atomic cooling halos in which H₂ cooling is totally suppressed by strong external radiation. Here, we obtain the critical FUV specific intensity J_{21}^{cr} (in units of 10^{-21} erg s⁻¹ Hz⁻¹ sr⁻¹ cm⁻²) required for supermassive star formation, with non-local thermodynamic equilibrium (non-LTE) primordial-gas chemistry. We consider the non-LTE chemistry with the vibrationally resolved H₂⁺ kinetics, as well as realistic radiation spectra of galaxies. We find that while the effect of non-LTE H₂⁺ chemistry is important for soft radiation sources, it is negligible and $J_{21}^{cr} \sim 1000$ for the hard spectra of young and metal-poor galaxies, considered as typical radiation sources in the early Universe.

1. Introduction

Discoveries of high-redshift quasars indicate the formation of supermassive black holes (SMBHs) within the first 1 Gyr of the Universe (e.g., Fan et al. 2001; Mortlock et al. 2011). How do those SMBHs form in such a short available time? The remnant BHs of supermassive stars with ~ $10^5 M_{\odot}$ is one of the promising candidates for the SMBH seeds (see, e.g., Volonteri 2012; Haiman 2013, for review).

Supermassive stars are thought to form if the H₂ cooling is totally suppressed by strong far-ultraviolet (FUV) irradiation in pristine atomic-cooling haloes. The number density of the formation sites strongly depends on the critical FUV specific intensity J_{21}^{cr} (in units of 10^{-21} erg s⁻¹ Hz⁻¹ sr⁻¹ cm⁻²) required for their formation (e.g., Dijkstra et al. 2014). Therefore, here we obtain a realistic value of J_{21}^{cr} , using a one-zone model of star formation (e.g., Omukai 2001) with detailed primordialgas chemistry.

2. Critical FUV intensity for supermassive star formation

First, to reveal the actual role of H_2^+ in supermassive star formation, we study the impact of assuming the LTE population for the vibrational levels of H_2^+ in Sugimura et al. (2016). Fig. 1 shows J_{21}^{cr} for the blackbody spectra with T_{rad} obtained by the non-LTE, ground-state and LTE calculations. For our non-LTE calculation, we solve the chemical evolution regarding $H_2^+(v)$ with v = 0, 1..., 18 as different species.

Next, we obtain J_{21}^{cr} for realistic radiation spectra of galaxies in Sugimura et al. (2014), as

Fig. 1. The dependence of J_{21}^{cr} on the temperature of the blackbody spectra. The calculations are done with the different prescriptions for the population of the H₂⁺ vibrational levels.

plotted in Fig. 2. We use the spectra for metalpoor galaxies in Inoue (2011), with the metallicity Z and ages ranged from 0 (Pop III) to $0.2Z_{\odot}$ (Pop II) and from 1 Myr to 1 Gyr, respectively. We consider instantaneous starburst and constant star formation cases.

3. Conclusions

Using a one-zone star formation model (e.g., Omukai 2001), we study the critical radiation intensity J_{21}^{cr} required for supermassive star formation considering the non-LTE chemistry and realistic radiation spectra. The non-LTE chemistry of H_2^+ vibrational state has a large impact for soft spectra corresponding to $T_{rad} <$ 7000 K, enhancing J_{21}^{cr} by a factor of a few compared to the LTE results. However, typical radiation sources in the early Universe are likely young and metal-poor galaxies with hard spectra, for which we obtain $J_{21}^{cr} \sim$ 1000.

Using the J_{21} distribution of Dijkstra et al. (2014) with $J_{21}^{cr} \sim 1000$, we estimate the number density of supermassive stars at z = 10 as $\sim 10^{-10}$ cMpc⁻³, roughly consistent with the observed SMBH density at $z \sim 6$. To determine whether the supermassive stars are indeed seeds of SMBHs or not, it is necessary to determine the condition for supermassive star

Fig. 2. The critical intensity J_{21}^{cr} for each galaxy spectrum model. The horizontal axis represents the hardness of the spectra, given by the ratio of the H⁻ photodetachment to the H⁺₂ photodissociation rates.

formation considering all relevant chemical/physical processes.

Acknowledgements. KS would like to thank the organizers of the conference. This work is supported in part by MEXT/JSPS KAKENHI Grant Number 15J03873 (KS). Finally, KS would like to thank Francesco Palla for encouraging me with his deep insight and warm personality.

References

- Dijkstra, M., Ferrara, A., & Mesinger, A. 2014, MNRAS, 442, 2036
- Fan, X., Strauss, M. A., Schneider, D. P., et al. 2001, AJ, 121, 54
- Haiman, Z. 2013, in Astrophysics and Space Science Library, Vol. 396, The First Galaxies, ed. T. Wiklind, B. Mobasher, & V. Bromm, 293
- Inoue, A. K. 2011, MNRAS, 415, 2920
- Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, Nature, 474, 616
- Omukai, K. 2001, ApJ, 546, 635
- Sugimura, K., et al. 2016, MNRAS, 456, 270
- Sugimura, K., Omukai, K., & Inoue, A. K. 2014, MNRAS, 445, 544
- Volonteri, M. 2012, Science, 337, 544